AI 반도체 패권, ‘시뮬레이션’이 결정한다… 칩 설계를 넘어 산업용 AI와 디지털 트윈으로 확장

2025년 12월, 엔비디아가 전자 설계 자동화(EDA) 소프트웨어 기업인 시높시스와 20억 달러(약 2조 9400억 원) 규모의 전략적 파트너십을 맺었습니다. 양사의 동맹은 겉으로는 칩 설계 기술 분야의 협력이지만, 시높시스가 인수한 앤시스의 CAE 및 엔지니어링 시뮬레이션 기술이 엔비디아의 생태계 속에 더욱 깊이 들어왔다는 점도 놓칠 수 없을 것 같습니다. 하드웨어(GPU)와 설계 소프트웨어(EDA)에 물리 시뮬레이션(CAE)까지 결합해 반도체의 설계부터 제조 그리고 디지털 트윈까지 전체 가치 사슬을 완성하는 그림을 그릴 수 있게 되었다는 점에 주목할 필요가 있어 보입니다.

AI 가속 컴퓨팅과 EDA의 결합, 20억 달러 규모의 전략적 동맹

엔비디아와 시높시스의 이번 파트너십은 거대 자본의 이동과 최첨단 기술의 통합이라는 두 가지 계층에서 진행됩니다. 우선 엔비디아는 시높시스의 보통주를 주당 414.79달러에 매입하는 방식으로 총 20억 달러를 투자해, 시높시스 전체 발행 주식의 약 2.6%를 확보했습니다. 하지만 이 거래의 본질은 단순한 지분 투자가 아닌 기술적 동맹에 있다고 할 수 있는데요. 양사는 엔비디아의 가속 컴퓨팅을 위한 하드웨어 및 AI 역량과 시높시스의 엔지니어링 설루션을 통합하기로 합의했습니다.

이번 협력에서 주목할 만한 기술적 화두는 ‘에이전틱 AI(agentic AI)’ 엔지니어링의 공동 개발입니다. 기존의 AI가 엔지니어의 명령을 수동적으로 수행하는 도구에 머물렀다면, 에이전틱 AI는 엔지니어처럼 스스로 생각하고 복잡한 설계 작업을 주도적으로 수행하는 ‘대리인(에이전트)’ 역할을 지향합니다.

“CUDA GPU 가속 컴퓨팅은 설계 방식을 혁신하고 있다. 원자에서 트랜지스터, 칩에서 완전한 시스템에 이르기까지 어느 때보다 빠르고 대규모로 시뮬레이션이 가능하며, 컴퓨터 내에서 완전한 디지털 트윈을 구현할 수 있다. 엔비디아는 가속 컴퓨팅과 AI의 힘을 활용해 엔지니어링과 설계를 새롭게 정의하고 있다. 시높시스와의 파트너십을 통해 엔지니어들이 우리의 미래를 만들 혁신적인 제품을 발명할 수 있도록 지원할 것이다.”
– 젠슨 황(Jensen Huang) CEO, 엔비디아

이를 위해 엔비디아는 자사의 최신 AI 모델인 ‘네모트론(Nemotron)’과 마이크로서비스인 ‘NIM(NVIDIA Inference Microservices)’ 등의 AI 기술 스택을 제공하고, 시높시스는 이를 자사의 EDA 툴에 탑재해 반도체 설계의 자동화 수준을 한 단계 끌어올릴 계획입니다. 더불어 엔비디아의 가상 세계 구축 플랫폼인 ‘옴니버스(Omniverse)’와 시높시스의 물리 시뮬레이션 기술을 결합하여, 반도체 칩뿐만 아니라 자동차나 로봇 같은 물리적 시스템 전체를 가상 공간에 구현하는 디지털 트윈 사업도 확대될 전망입니다.

엔비디아의 생태계 확장과 시높시스의 기술 도약

이번 투자는 양사 모두에게 시장 경쟁력을 높이고 다른 회사의 추격을 막을 진입 장벽을 구축할 수 있는 윈–윈(win–win) 전략이 될 수 있어 보입니다. 엔비디아 입장에서 이번 동맹은 자사의 가속 컴퓨팅 생태계를 반도체 개발의 뿌리 단계까지 확장하는 계기가 됩니다. 시높시스의 설계 소프트웨어가 엔비디아의 GPU 가속 기술인 쿠다(CUDA) 등을 기반으로 구동된다면, 전 세계 반도체 설계 회사들이 자연스럽게 엔비디아 GPU를 서버 인프라로 채택하게 되기 때문입니다. 즉, 엔비디아의 칩은 AI 서비스용 연산 장치를 넘어, ‘반도체를 만드는 필수 도구’로 자리 잡게 되는 것입니다.

시높시스 입장에서도 이번 협력은 기술적 한계를 돌파하고 재무적 안정을 추구할 기회가 될 것 같습니다. 반도체 미세 공정이 나노미터(nm) 단위로 내려가면서 설계 검증에 소요되는 시간은 기하급수적으로 늘어나고 있는데, 엔비디아의 GPU 가속을 활용하면 이 시간을 크게 단축할 수 있을 것으로 보입니다.

“차세대 지능형 시스템 개발의 복잡성과 비용은 전자공학과 물리학의 더 깊은 통합, 그리고 AI와 컴퓨팅을 통한 가속화를 요구한다. 시높시스와 엔비디아는 통합된 AI 기반 시스템 설계 설루션을 제공할 수 있다. 양사는 함께 엔지니어링을 혁신하고, 전 세계 혁신가들이 더욱 효율적으로 아이디어를 실현할 수 있도록 힘을 보탤 것이다.”
– 사신 가지(Sassine Ghazi) CEO, 시높시스

시높시스는 이러한 성능 향상으로 경쟁사와 기술 격차를 벌리는 무기를 얻게 됐습니다. 또한, 최근 앤시스 인수로 많은 자금을 사용한 상태에서, 엔비디아의 20억 달러 투자를 통해 재무 부담을 덜고 연구개발에 집중할 수 있는 실탄을 확보하게 되었습니다.

가속 컴퓨팅과 생성형 AI를 위한 엔비디아의 블랙웰 아키텍처(source: NVIDIA)

양사의 동맹은 반도체 산업과 AI 산업 전반에 적지 않은 파도를 일으킬 것으로 보입니다. 무엇보다 ‘AI가 AI 반도체를 만드는’ 시대가 본격적으로 열리면서 칩 개발 속도에 혁명이 일어날 것으로 보이는데요. 지금까지 고성능 AI 반도체를 설계하려면 수백 명의 숙련된 엔지니어와 수년의 시간이 필요했습니다. 하지만 에이전틱 AI가 상용화되어 복잡한 배선 배치나 검증을 자동 수행하게 되면, 반도체의 개발 기간이 크게 줄어들 수 있다는 것입니다. 이러한 변화는 ‘반도체 설계의 대중화’를 앞당겨, 빅테크 기업뿐만 아니라 스타트업도 맞춤형 AI 칩을 더 쉽게 개발할 수 있는 환경을 만들 것 같습니다.

또한, 반도체 설계 인프라의 중심축이 중앙처리장치(CPU)에서 그래픽처리장치(GPU)로 급격히 이동할 전망인데요. 전통적인 EDA 작업은 주로 CPU 기반 서버에서 이루어졌지만, 엔비디아와 시높시스의 협력은 이 워크플로를 GPU 중심으로 이동시키게 됩니다. 2025년 10월 경주 APEC 기간 중에는 삼성전자와 SK하이닉스가 엔비디아 GPU 기반의 대규모 ‘AI 팩토리’를 구축하고, 반도체 연구 개발과 생산 고도화에 활용할 계획을 밝히기도 했는데요. 향후 반도체 기업들이 데이터센터를 구축할 때 CPU보다 GPU 확보에 더 많은 예산을 투입하게 만든다면, 엔비디아는 시장 지배력을 높일 수 있을 것 같습니다. 나아가 설계–검증–제조로 이어지는 반도체 전체 공급망을 기술적으로 통제하는 거대 플랫폼 기업을 노리는 것도 가능해 보입니다.

AI 반도체 개발의 생태계 장악 노리나

한편, 이번 투자는 최근 AWS(아마존웹서비스), 구글, 마이크로소프트 등 빅테크 기업들이 자체 NPU(신경망처리장치)를 개발하며 ‘탈 엔비디아’를 시도하는 흐름에 대한 전략적 대응으로 볼 수도 있습니다. 빅테크 기업들은 엔비디아 GPU에 대한 의존도를 줄이기 위해 독자적인 AI 연산 칩을 개발하고 있는데요. 이런 상황에서 엔비디아와 시높시스의 협력은 ‘칩을 만드는 도구’ 자체를 엔비디아 생태계에 묶어두는 전략이 됩니다.

구글의 TPU(텐서처리장치), AWS의 트레이니엄(Trainium) 등을 만드는 과정에서 가장 효율적인 설계 도구가 ‘엔비디아 GPU 가속이 적용된 시높시스 설루션’이라면, 경쟁사들은 엔비디아를 이기기 위해 엔비디아의 장비를 써야 하는 상황에 놓일 수 있다는 것입니다. 엔비디아의 이번 투자는 자사 GPU가 단순한 AI 연산 도구를 넘어, AI 반도체 산업 전체의 필수 인프라로 자리잡게 하는 효과도 기대할 수 있습니다. 경쟁자들의 하드웨어 독립 시도를 막을 수는 없더라도, 그 설계 및 검증 과정에서 엔비디아의 영향력을 높은 수준으로 유지하려는 생태계 잠금(lock-in) 전략이 될 수 있다는 것입니다.

디지털 트윈을 완성하는 퍼즐, CAE

전체 그림에서 시높시스가 품은 앤시스의 역할도 주목할 만합니다. 시높시스는 2024년 1월 엔지니어링 시뮬레이션 분야의 주요 기업인 앤시스를 약 350억 달러(약 46조 원)에 인수한다고 발표했고, 2025년 7월 인수를 완료했습니다. 이는 반도체 설계와 물리 시뮬레이션이라는 두 영역을 통합해서, 칩 단위를 넘어 시스템 전반을 검증할 수 있는 역량을 확보하기 위한 전략적 결정이었습니다. 시높시스 산하에 들어간 앤시스는 이번 협력의 범위를 반도체 밖으로 확장하는 열쇠를 쥐고 있습니다.

최신 AI 칩은 많은 전력을 소모하고 높은 열을 내기 때문에, 단순히 회로를 그리는 것을 넘어 열을 식히고 전기적 간섭을 막는 물리적 설계가 필수로 꼽힙니다. 앤시스의 다중 물리(멀티피직스) 시뮬레이션은 바로 이 난제를 해결하는 핵심 기술이고, 엔비디아 GPU의 강력한 연산 능력은 복잡한 물리 계산을 빠르게 처리하는 최적의 도구가 됩니다.

나아가 앤시스는 엔비디아가 꿈꾸는 ‘완전한 디지털 트윈’을 구현하는 데 결정적인 역할을 할 수 있습니다. 엔비디아 옴니버스가 가상 공간의 외형을 만든다면, 앤시스는 그 안에 실제 세계의 물리 법칙을 적용시킬 수 있습니다. 앤시스는 시높시스와 엔비디아의 협력이 반도체 설계를 넘어 자동차, 항공우주, 스마트 공장 등 다양한 영역을 아우루는 ‘산업용 AI(industrial AI)’로 확장되도록 돕는 다리 역할을 할 수 있을 것으로 보입니다.

앤시스는 반도체 개발뿐 아니라 산업용 디지털 트윈까지 확장하기 위한 시뮬레이션 기술을 제공할 수 있습니다.(source: Ansys)

전자–기계의 경계가 무너진다 : CAE 기술의 미래

시높시스와 앤시스의 결합 외에도 최근 몇 년간 CAE 및 시뮬레이션 업계는 서로 다른 영역에 있던 기업들이 경계를 허물고 통합되는 지각 변동을 겪고 있습니다. 2025년 지멘스가 데이터 분석 및 시뮬레이션 기업인 알테어를 인수한 것, 2024년 시높시스의 경쟁사인 케이던스(Cadence)가 자동차 및 항공우주 구조 해석 기술 기업인 베타 CAE 시스템즈(BETA CAE Systems)를 인수한 것이 대표 사례입니다. 또한 계측 장비 기업인 키사이트(Keysight)는 가상 프로토타이핑 기업 ESI 그룹(ESI Group)을 지난 2023년에 인수하기도 했습니다. 이런 인수합병의 흐름은 전자 설계(EDA)와 기계 설계(CAE)의 융합을 뜻하며, 향후 AI 및 반도체 시장에서 시뮬레이션 기술이 단순한 검증 도구를 넘어 핵심 원천 기술로 입지를 높일 것임을 시사합니다.

첫째, CAE/시뮬레이션은 산업용 AI를 위한 ‘데이터 창고’의 역할을 합니다. 산업용 AI를 학습시키기 위한 양질의 고장 데이터나 사고 데이터를 현실에서 구하는 것은 어렵기 때문에, 물리 법칙에 기반한 가상 환경에서 합성 데이터(synthetic data)를 생성해 AI에 공급하는 것이 필수가 되고 있습니다. 둘째, 반도체 시장에서는 패키징의 한계를 넘는 열쇠가 됩니다. 미세 공정의 한계로 인해 칩을 3차원으로 쌓는 기술이 중요해지면서, 열과 구조적 안정성을 해석하는 CAE 설루션은 이제 선택이 아닌 ‘차세대 칩 설계의 필수 전제 조건’이 되고 있습니다.

엔비디아의 시높시스에 대한 투자는 전 세계 기술 산업이 ‘설계–시뮬레이션–제조–구동’이 하나로 연결된 거대한 디지털 생태계로 재편되고 있음을 보여주는 신호탄입니다. 엔비디아는 칩을 넘어 ‘플랫폼’이 되려고 하고, 시높시스 및 CAE 업계는 해석 도구를 넘어 ‘지능형 통합 설루션’으로 진화하고 있습니다. 전자(electronics)와 기계(mechanics)의 경계가 사라지고 AI가 융합되는 모습인데요. 이들의 결합은 향후 반도체 및 AI 산업의 기술 표준을 누가 주도할 지에 대한 예상과 함께, 새롭게 구축되는 거대한 생태계 안에서 기업들이 어떤 생존 전략을 모색해야 할 지에 대한 고민도 안겨주고 있습니다.

Comments

댓글 남기기

워드프레스닷컴으로 이처럼 사이트 디자인
시작하기